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Probabilistic ballistic annihilation with continuous velocity distributions
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We investigate the problem of ballistically controlled reactions where particles either annihilate upon colli-
sion with probabilityp, or undergo an elastic shock with probability-p. Restricting to homogeneous
systems, we provide in the scaling regime that emerges in the long time limit, analytical expressions for the
exponents describing the time decay of the density and the root-mean-square velocity, as continuous functions
of the probabilityp and of a parameter related to the dissipation of energy. We work at the level of molecular
chaos(nonlinear Boltzmann equatipnand using a systematic Sonine polynomials expansion of the velocity
distribution, we obtain in arbitrary dimension the first non-Gaussian correction and the corresponding expres-
sions for the decay exponents. We implement Monte Carlo simulations in two dimensions, which are in
excellent agreement with our analytical predictions. perl, numerical simulations lead to the conjecture
that unlike for pure annihilationg=1), the velocity distribution becomes universal, i.e., does not depend on
the initial conditions.
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[. INTRODUCTION comes neglectible. The Boltzmann equation thus becomes
relevant at late times. With this phenomenology in mind, we
We consider an assembly of particles that move freely irconjecture that in the case of probabilistic ballistic annihila-
d-dimensional space between collisions, where only twdion, the Boltzmann equation adequately describes the dy-
body collisions are taken into account. The purpose of thisiamics forp>0. Forp=0, the resulting elastic hard sphere
paper is to present a model that unifies both the dynamics afystem would be correctly described by Boltzmann’s equa-
annihilation[1-5] and of hard-sphere gasgsj using a con- tion in the low-density regime onl}6,12].
tinuous parametepe[0,1], the probability that two par- The paper is organized as follows. In Sec. Il, we first
ticles annihilate when they touch each othé}. In the lim-  introduce the Boltzmann kinetic equation describing the
iting casep=1, we recover pure annihilation dynamics, and probabilistic annihilation dynamics of a homogeneous sys-
for p=0 the system of hard spheres. In our system in théem in the scaling regime, which corresponds to asymptoti-
limit p—0, p>0 (denotedp—0"), a particle will collide cally large times. We then provide analytical expressions for
elastically many times before being annihilated. Thus théhe exponentg andy governing the algebraic time decay of
particles have a diffusinglike motion before annihilating. ~ the particle density and the root-mean-square velocity, re-
Another extensively studied class of problems is the oneépectively. Next, we give the first non-Gaussian correction
of diffusion-limited annihilation in which diffusing particles @, to the rescaled velocity distribution by means of a Sonine
annihilate on contact with a given rai@—10]. The simplest polynomial expansion. This allows to give explicit expres-
case corresponds to the reactibr A— . sions for the exponents and y up to the first correction in
The number of particles decays, in the long time regimeg,. Section Ill shows the results of direct Monte Carlo simu-
as a power lawn(t)~t~¢. The decay exponent can be ex- lations (DSMC) that are in very good agreement with the
actly computed 11] and is é=min(1d/2), whered is the analytical results. In the insight of those simulations we
dimension of the system. However, the time decay exponengarify the ambiguities following from the analytical compu-
for the density found in our case wher-0" are different  tation of a, [13] and select the simplest and most accurate
from the exponents found in diffusion-limited systems. Therelation fora,. It is numerically shown that unlike for pure
reason for this difference is that the underlying microscopicannihilation, the first Sonine correction forgp<1 does not
mechanisms responsible for diffusion are different. In ourdepend on the parametgr characterizing the initial distri-
case, particles which have a bigger velocity modulus have Aution f for small velocities: limy_of (v;t=0)=|v|[*. We
bigger annihilation rate than the slow particles. The velocityalso show analytical and numerical evidence that the conjec-
dependence of the annihilation rate is not present in the usuélire put forward in Ref[4] according to which the exponent
diffusion-limited annihilation. £=4d/(4d+1) becomes exact in the limiting cage~0*
It was recently showf5] that in the long time limit, the [4]. Finally, Sec. IV contains our conclusions.
annihilation dynamics for dimensions higher than one is ad-
equately described by the nonlinear Boltzmann equation.
This may be understood in a qualitative way by the fact that II. BOLTZMANN KINETIC EQUATION
the density of the gas decays as a function of time, so that the
packing fraction(which is the total volume occupied by the
particles divided by the total volume of the sysjene- We consider a system made of spheres of diameter
creases, and the role played by correlatigesollisiong be-  moving ballistically ind-dimensional space. If two particles

A. Scaling regime
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touch each other, they annihilate with probabilitynd thus We are searching for an isotropic scaling solution of the
disappear from the system. With probability-p, they un-  homogeneous system, where the time dependence of the dis-
dergo an elastic collision. The precollisional velociti€s tribution function is absorbed into the particles density)
and the postcollisional onag are related in the latter case by and in the typical velocity (t) = 2(v?)/d, where(v?) is
A the mean squared velocity. This imposes the scaling form
Vit =vi— (Vi 0) o, (18  [5,14

V¥ =Vo+ (Vip 0) 0, (1b)

n(t)-
wherev,,=Vv;—V, is the relative velocity of two particles, fl(v’t):;i )f(c), )

and o a unit vector joining the centers of the grains. We
consider only two body collisions. The initial spatial distri- o —
bution of particles is supposed to be and assumed to remalihere the rescaled velocity is given by=v/v(t). By con-
homogeneous. struction, [f=1.

Let f1(vq;t) be the instantaneous single particle distribu-

. S . B. Decay exponents in the scaling regime
tion function inRY. The Boltzmann equation for our homo- Y exp 918

geneous system free of forcing red&s$ By integrating Eq(2) overv, with weights 1 and?, we
obtain the number density and energy time evolution
J A Ao
S0 =—po? [ dvidvdaairiy) dn
qr =~ Pe(n, (53
X (01 f1(va i) Fa(Vo;t) + (1= p)l (. fy),
(2) d(no?) -
) o . =—paow(t)nvs, (5b)
where 6 is the Heaviside distributiony;,=vq,/v,,, and dt

v1,=|V1J. The integration with respect to runs over the
solid angle. The first term on the right-hand-side of E2).  where the collision frequency is given by
describes the annihilation dynamics, and the second one the
elastic shocks: the collision terig reads
w(t)=n(t)v(t)o'd71f de,dc,do( o ¢pp) 8( 0 ¢ F(Cp)
Ic(fl,f1)=ad’1f dv,dvodaé( o Vi) (0 Vi)

xXf(ca), (6)
X[ (vi* s fa(v3* ) —fa(vii)fa(va )]

(3) and the energy dissipation parameteby

[ deudeatio o cocieacen)

7
f dec?f(c)

o=

f de,de,da( o ¢pp) 6( 0 ¢ F(cq)T(Cy) -

We made use of the fact that the elastic dynamics does n@{here w,=w(t=0) andv,=v(t=0). We conclude from
contribute to the decay of energy or density, thus the integragis result that the dynamics are up to the time rescaling
tion over the elastic collision term vanishes. The resolution_, t/p (and importantly up to the numerical value @f the

of Egs. (5) follows the method of Refl5] and we obtain same as the ones obtained for pure annihilafEinThe de-
cay exponents are given myt)oct ¢ anduv(t)ot™”, with
1+ —2/(1+a)
—=|1+p wot) , (8a) 2

o 2 =, (%)

1+«

U_ 1+« (1-a)/(1+a) 1

==|1+p wot) , (8b) _aT-
Vo 2 Yo ar1 (9b)
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The scaling exponents consequently satisfy the constéaint

+y=1.

C. Rescaled kinetic equation

Inserting the scaling forr¥) in Eq.(2) and making use of
Egs.(8), we obtain after some algebra

1-«

(Crg)| 1+ —— T(cy)

d
d+Cld_Cl

~ ~ 1-p
= f(C1)f dd(‘a|012|f(02)_ -
R p

(0= | oo do0dr-810(6-cualfier f(est)

—T(cpT(cy)] (1D

and

~ A o ,n_(dfl)/2
ﬁ1=L{ddﬂ'é’(U'Vlz)(O"Vlem, (12

I' being the gamma function. In E¢L0), the angular brack-
ets denote average with weigfit for a given function
q(clic\Q)v

<Q>:f deydeyq(er,c)f(cy,c). (13
Making use of the identity14]
decX o|+ci F(c)=—k(c" (14)
Rrd dc ’

and integrating Eq(10) overc; with Weightc‘{, one obtains

2( (cah) _1>+

1-p 2
w142 4 P2 M
(c){cy)

P KB (cpp)(ch)

K =0,

(19

whereu = — [ ade, 5T (F,F) anda=(c,.c3)/((c12)(c))) is
the energy dissipation parameter.

D. First non-Gaussian correction
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F(c)=M(c) : (16)

1+, aS(c?)
=1

where M(c)= " %%exp(-c?) is the Maxwellian distribu-
tion, and S;(c?) the Sonine polynomials. Due to the con-
straint(c?)=d/2, the first correctiora, vanishes[14]. For

our purposes, it is sufficient to push the truncation of expres-
sion (16) to second order, wher&,(x)=x2/2—(d+ 2)x/2
+d(d+2)/8. In order to compute anda,, one may follow

the method used for inelastic granular gases in Ref: we
may use the hierarch§l5) for k=2 andk=4 to obtain a
system of two equations for the two unknowasand a,.

The calculations are, however, tedious and it appears useful
to consider the alternative method that consists in invoking
the limit of vanishing velocities of Eq10) [5]. Indeed, since
we expect that the tail of the exact solution for the distribu-
tion function differs significantly from M(c)[1
+3,-18;S(c?)], the computation of low order moments of

f should give a more accurate result. From Exj,
1+dl_a}"f'(o> F0) (e ——P T im T )
— = Cqy)——— —lim I (f,f).
2 ! p Blc1—>0
17)

We see that the limit in Eq(17) involves moments of a
lower order thanu,. Neglecting the corrections;, i=3,
the computation of the latter limit givesee the Appendix

(C12)

1-d

SgM(0)
2 a,+

2\m

whereSy=27%9?T'(d/2) is the surface of the-dimensional
sphere. Inserting Eq18) in Eq. (17), one obtains a relation
betweenx anda, that is supplemented with that correspond-
ing tok=2 in Eq.(15), in order to finally obtainx anda,.

To this end, we make use of the various relations between
moments of the velocity distribution and the fourth cumulant
a, derived in Ref[5]. To linear order ima,, the correspond-
ing system reads

d(d+2)
16 2

imT(F,f)=

C1—>0

(18

a=1+—=

-+
dl a

2

V2) V21 1-p
) 2%{5__p (d—l)}, (19
_ (c125) _

a= CN
(C12){cT)
where use has been made of the relafior=0 (the elastic

shocks conserve the total kinetic energy of the colliding
pairg, which consequently eliminatgsin the second rela-

123 0O(a?), (20
5q T2 +a+ (a3), (20

The solution of the Boltzmann equation for pure annihi-tion. However, as was shown in previous works3,16],
lation dynamics p=1) is non-Gaussian in several aspects.there are some ambiguities arising from the linearization pro-

The tail of the distribution is overpopulatg], and devia-

cedure, which may affeca, if this quantity is not small

tions from the Gaussian behavior may also be observed neahough. We have thus solved the full nonlinear problem, and
the velocity origin[4,5]. Itis thus reasonable to think that the then in order to have a simpler expressioragf chosen the

velocity distribution function obtained upon solving Eq0)

linearizing scheme that yields the closest restile differ-

will show similar deviations. To study the correction close toence does not exceed 10%) to the nonlinear solution. It turns
the origin, it is convenient to apply a Sonine expansion forout as well that this scheme is the closest one to the numeri-

the distribution functiorf(c) [15]

cal simulations of Sec. Ill. This correction is given by
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az(p):8 3 2\/5 . (21) 0.10 DSMC X
1— p Sonine
4d+6—\2+—8\2(d—1) %
p 0.08
X
In the limiting case of pure annihilatiop— 1, one recovers ﬁ* 0.06 F X
the result of Ref[5]. ) ><
Inserting this result into the definition Eq®), we obtain S o0a |
the decay exponentsandy=1—&. In the limitp—0*, we ' X
note thata, vanishes, as may have been anticipated: the X
velocity distribution then becomes close to its elastic Max- 0.02 1 X
wellian counterpart that holds fgp=0. In this limit, the %
decay exponent ig=4d/(4d+1), as conjectured in Ref. 0.00 . . . .
[4]. We emphasize that the limip—0 is singular: ¢ is 0 02 0.4 b 0.6 0.8 1
bounded from above byd#(4d+ 1) for anyp>0, whereas
¢ vanishes fop=0. It is therefore important to exclude FIG. 1. First Sonine correctioa, from the analytical estimate
=0 from the limitp—0 in order to get well behaved limit- (21) and from DSMC as a function of the annihilation probability,
ing expressions. for d=2. The initial number of particles is»610°, and each value

is obtained from approximately 4Gndependent runs. The results
are not sensitive to the initial velocity distribution. However, the
lll. SIMULATION RESULTS convergence process is much faster starting from a Gaussian distri-

We implement a DSMC scheme in order to solve theP“O™

Boltzmann equation. The algorithm may briefly be described

as follows. We choose at random two different particles

{i,j}. If their velocity is such that=v;;- >0, they may Plotting the densityr/n, (and the root-mean-squared ve-

collide. Time is subsequently increased @) 1, where locity v/vg) as a function of timé on a log-log plot gives the

N is the number of remaining particles. With probabilgly decay exponentésee Fig. 2 The numerical results are in

the two particles are then removed from the system, and withgreement with the analytical predictions obtained from the

probability 1— p their velocity is modified according to Egs. set of Egs.(19) and (20) that is inserted in Eq(9). The

(1). For more details on the method see RE&17-19. As  predicted power-law behavior is observed over several de-

the number of particles decreases, the statistics at late timgades, as shown by Fig. 3 fpe=0.5. In Fig. 4, we show that

suffers from enhanced noise. It is thus necessary to averagie scaling relatioF+ y=1 is well obeyed for all values of

over many independent realizations. p. Such a relation holds in fact independently of the molecu-
In dimension one, the dynamics of annihilation createdar chaos assumption underlying the Boltzmann equation.

strong correlations between particlgg]. This precludes a

Boltzmann approach that relies on the molecular chaos as- ¢ gg0

sumption. We will thus focus on numerical simulations of

two-dimensional systems, and we expect the role of correla-

tions to diminish when the dimensionality increases. 0.885

B. Decay exponents

A. First Sonine correction

0.880

Making use of the relation betweem, and the fourth
cumulant of the rescaled velocity distributiph6]

&(d=2.,p)

Sonine
Gaussian ----—---—
0875 B DSMC RV S—

4
ECE 22 BN

0.870 3

ax

we show in Fig. 1 the numerical values of the first Sonine 0 02 0.4 0.6 08 1
correctiona, for different values ofp. The agreement with P

Eqg. (21) is good in most cases.
q.(2Disg FIG. 2. The decay exponensandy (insej in two dimensions,

It turns out that the discrepancy between &) and obtained analytically from Eqg19) and (20) that are inserted in
DS_MC 'S maln!y due fo the “mr.[ methoq of.~co-mputnag. Eqg. (9), and from DSMC(symbolg. The initial number of particles
This method yields a very precise distributibrin the rel- 5 5% 10°, and the number of independent runs approximately 100.
evant region of interest in the framework of a Sonine poly-The values of the exponents are not very sensitive to the probability
nomial expansion, namely, the small velocity region. On thep. The horizontal line shows the Maxwellian analytical prediction to
other hand, it is less accurate in the less interesting higheroth order ina,, i.e., ¢ and y from Egs.(19) and (9) with a,
velocity region, hence the discrepari@a]. =0.
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6 [ ] 1.5
DSMC ——
Interpolation ---------- J !
5 14§
4 h LY
—_ 1.3
S -
pd £
%) =~ 14 S 12
oo )
-
o1 3 17
%g ' ] 1.1 &
0 -~ J
L
// 1
-1~ 8 7 65 432 -1 07
loggt
_2 1 1 1 1 1 1 1 1 1 0‘9 1 1 1 1 1 1 1 1 1
-8 -7 -6 -5 4 -3 -2 -1 0 1 25 2 15 -1 05 0 05 1 15 2 25
logint <
FIG. 3. The time dependence in two dimensionsno&nd v FIG. 5. Plot off (c;)/M(c,) at different times corresponding to

(insey on a logarithmic scale fop=0.6 and a Gaussian initial different densities, fop=0.5. The initial number of particles is 2
velocity distribution, showing a clear power-law behavior. The x 10’ and there are approximately*liddependent runs. The initial
straight line is the linear interpolation giving the decay exponentdistribution is Gaussian and thus corresponds to the flat curve. The
No(N) is the initial (remaining number of particles. We have de- continuous curve is the analytical predictior &,S, with a, given
noteduv, the initial root-mean-square veloc@ The same quantity by Eq.(21). The inset shows a magnification of the small velocities
is denotedy for t>0. The deviation observed for large times is due region.

to the low number of remaining particles.

usingf(c;)/M(c;)] are fully compatible numerically. How-
C. Evolution toward the asymptotic distribution ever, the latter method requires much more extensive simu-
In order to have a more precise understanding and acct@tions. It is instructive to investigate the evolution toward
racy check of our results, it is useful to study the Ve|ocitythe_asympt9t|c solution start|_ng from dlfferent |n!t|al distri-
distribution in the scaling regime. Indeed, the distributionPutions, which are characterized by their behavior near the
may be adequately described by the Sonine correatjoat ~ OTigin- Io this extent we define the exponentby the be-
late times only. Before the scaling regime is reached, thdavior f(c)=|c[* for c—0. Figure 6 shows the non-
velocity distribution’ (c,) is time dependent. A very precise Gaussi_ahi_ties_of _the_evolution tov_vards the scaling function
check consists in studying the evolution of the non-for an initial distribution characterized hy=3, and Fig. 7
Gaussianities. To this end, it is useful to consider numerican)}orIétf)r:b_o?rﬁzihitial distribution 3 and 3/2. the so
the qu.antltyf~(ci)//\/l(ci) - 1+a_282(c‘)' _Flgure 5 shows the lution is attracted toward a sggling funcﬁon char:alcterized by
evolution of f(c;)/ M(c;) for different times corresponding

. o X L X Y u=0. Hence, there is a qualitative difference between
Lo ?lﬁerent densities, starting from an initial Gaussian d'sm'probabilistic annihilation and pure annihilation. Indeed, it
ution.

) ) was shown in a previous work that for pure annihilatporis
It turns out that both methods of computiag [directly

L P conserved[4], and more importantly thag indexes the
using its definition in terms of the fourth cumulaf@?) or suniversality classes” of this proceswo distributions with

1.0015 T T T T 4.0 T T T T T T T T T
1.001 ] 3.5
3.0
1.0005 1
i_ 2.5
& . 3
X X x X 2.0
X
0.9995 -
x 15 N
i o |
0.999 L0
% e e
0'9985 1 1 1 1 0‘5 1 ke 1 1 1 1 1 1 1 i 1
0 0.2 04 0.6 0.8 1 25 2 15 -1 05 0 05 1 15 2 25
p G
FIG. 4. Numerical verification of the relatiofi+y=1 in two FIG. 6. Same as Fig. 5, but for an initial distribution such that
dimensions for different values @f Note they scale. u=3.
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0.8

0.6 _

04

02

u'=05 N()=2X10; E—
“'=3, N0=2X10 e

“’= '3/2, NO=4X107 -------------

_0.6 1 1 1 1
2 3
logo(N/N)

FIG. 9. Plot ofa, as a function of the densitid$y/N for dif-
ferent values ofu. There are approximately>510* independent

runs.
the sameu are characterized by the same long time exponent

£). Obviously, adding the effect of elastic collisions in the  Finally, in order to clarify the relevance of the scaling

dynamics of probabilistic annihilation violates the conservafunction, we studied the fourth cumulaaj as a function of

tion of w. Next, the question is to know whether the No/N, for the same parameters as those in Figs. 5-7. The

asymptotic distribution depends om or not. We conse- result is shown in Fig. 9. The fact thap reaches a plateau

quently show in Fig. 8 the rati&*=9(c,)/f*=3)(c,)=(1 indicates that the system enters a scaling regime at late times.

+al =) (1+ad). For u=—3/2 (Fig. 7), due to the initial central peak, the
The ratio tends to unity, which implies thai(z,FO) initial distribution is extremely different from its late time

_ a(zﬂza). Moreover, we checked that for the negative Valueasymptotlc counterpart, so that the transient evolution takes

w=—3/2, the same conclusion holds. The convergence iIonger and the plateau regime is only approached. Finally, it

FIG. 7. Same as Fig. 5, but for an initial distribution such that
w=—3/2 and initially 4x 10" particles.

h | due to the di f the initial distrib ﬁway be observed in Fig. 9 that for the three initial conditions
owever slower due 1o e divergence ot tne intial AistrbU=, "6, ,rth cumulants converge to the same value. This is a

tion near the_velocny origin. We thus conjecture _th_at not Onlyfurther illustration of the universal behavior discussed above.
the first Sonine coefficient of probabilistic annihilation but

also the full velocity distributiorfand hence, all decay expo-
nentg show an universal property in the sense that they do
not depend on the initial velocity distribution if<Op<<1. A system made of spherical particles moving freely in
This is a nontrivial result since it was shown that this is notd-dimensional space was studied. When two particles col-
true in the case of pure annihilatign=1 [4]. lide, they annihilate with probabilitp or undergo an elastic
collision with probability 1-p. We gave empirical argu-

IV. CONCLUSIONS

1.005

1.000

fo/f3

0.995 |

099 | *

-1.5

FIG. 8. Plot of f**=9(c,)/f(»=3)(c,) for three different times,

-1

-0.5

15

ments for the relevance of the Boltzmann description in this
system. We obtained analytically the decay exponents of the
density of particles and of the root-mean-squared velocity in
terms of the energy dissipation parameterit turns out that
upon rescaling time according te~t/p, p>0, the formal
structure of the decay equations is the same as in the case of
pure annihilationp=1.

In the scaling regimdwhich emerges in the long time
limit), the first Sonine correctioa, to the Maxwellian dis-
tribution was obtained as a function of the continuous param-
eter p. This allows to establish an explicit relation for the
decay exponents. It was shown that in the limit:0", the
exponenté governing the decay of particlea(t)st ¢, is
given by ¢é=4d/(4d+1), thereby confirming a conjecture
put forward in Ref[4].

Numerical simulation§DSMC) in two dimensions are in

andp=0.5. We see that for late times the ratio of the two distribu-2greement with the analytical correctiap(p). Moreover,
tions tends to unity, which leads to the conjecture that the firsthe analytical values for the decay exponents obtained from

Sonine correctiong, are the same in both casgs=0 andu=3.

the first correctiona, are in good agreement as well with

The results reported here correspond to particularly extensive simumumerics. The relatiog+ y=1 was shown to hold for all

lations (note the vertical scale

values ofp. The study of the dynamics of non-Gaussianities
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embodied ina,S, reveals a qualitative difference with pure  _ ) oA a -
annihilation dynamics: the parameterdescribing the small l=— lim f ddczf dob(o-cp)(o-crp)f(cy)f(cy),
velocity behavior of the rescaled distribution is not con- ¢ -0 F

served for probabilistic annihilation wherp<<1. Numeri- (Al3)
cal results for different values gf lead to conjecture the
universality of the rescaled velocity distribution in this pro-  T,= lim f ddczf dod(o-Cip) (o e f(cF* )F(cs*),
cess(this universality being lost for pure annihilation only, c;—07 R

i.e., forp=1). (Alb)

so that Iin?:PONI("fo) =T,+T,. Within the framework of the

ACKNOWLEDGMENTS Sonine expansio16) and neglecting the coefficients, i

. . . . . =3, the calculation of the latter integrals gives
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National Science Foundation and the French “Centre Na- lj=——— a——|1-=%|, (A2
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~  SgM(0) d’-2d+3  ,3d(d-2)
APPENDIX: CALCULATION OF THE LIMIT  ¢,—0 OF lg= 2\m 1+a,—3 gy }
THE COLLISION TERM | (A3)

This quantity may be obtained as a particular case of @hereS,=27%4T'(d/2) is the surface of the-dimensional
previous Ca|Cu|atIOl{13]. The reSU!E is the fO”OW|ng. We Sphere, and’ the Gamma function. Summing EqQZ) and
define the loss terrh and gain termi 4 by (A3) leads to the result given by E(L8).

[1] E. Ben-Naim, S. Redner, and F. Leyvraz, Phys. Rev. [7€&t.  [11] M. Droz and L. Sasuwa, Phys. Rev. 48, R2343(1993.
1890(1993; E. Ben-Naim, P.L. Krapivsky, F. Leyvraz, and S. [12] O.E. Lanford lll, Physica AL06, 70 (1981).

Redner, J. Phys. Cher@i8, 7284(1994). [13] F. Coppex, M. Droz, J. Piasecki, and E. Trizac, Physi&28
[2] M. Droz, P.A. Rey, L. Frachebourg, and J. Piasecki, Phys. Rev. 114 (2003.

Lett. 75, 160(1999; Phys. Rev. E51, 5541(1995. [14] T.P.C. van Noije and M.H. Ernst, Granular Mattér 57
[3] P.L. Krapivsky and C. Sire, Phys. Rev. Le#, 2494(200J). (1998.
[4] E. Trizac, Phys. Rev. Let88, 160601(2002. [15] L. Landau and E. LifshitzPhysical Kinetic§Pergamon, New
[5] J. Piasecki, E. Trizac, and M. Droz, Phys. Rev6& 066111 York, 1981.

(2002. [16] J.M. Montanero and A. Santos, Granular Mae53 (2000.

[6] P. Resibois and M. de LeeneClassical Kinetic Theory of
Fluids (Wiley, New York, 1977.

[7] E. Trizac and P. L. Krapivsky, Phys. Rev. Le®l, 218302
(2003.

[8] K. Kang and S. Redner, Phys. Rev. L&2, 955(1984).

[9] K. Kang and S. Redner, Phys. Rev.38, 2833(1984).

[10] D. Toussain and F. Wilczek, J. Chem. Phy8, 2642(1983.

[17] G. Bird, Molecular Gas Dynamic$Oxford University Press,
New York, 1976; Molecular Gas Dynamics and the Direct
Simulation of Gas Flow$Clarendon Press, Oxford, 1994

[18] J.M. Montanero, V. GarzoA. Santos, and J.J. Brey, J. Fluid
Mech. 389 391 (1999.

[19] A. Frezzotti, Physica 278 161 (2000.

011303-7



